Cdk5-Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer's disease models.

نویسندگان

  • Chun Shi
  • Keith Viccaro
  • Hyoung-Gon Lee
  • Kavita Shah
چکیده

Deregulated Cdk5 causes neurotoxic amyloid beta peptide (Aβ) processing and cell death, two hallmarks of Alzheimer's disease, through the Foxo3 transcriptional factor in hippocampal cells, primary neurons and an Alzheimer's disease mouse model. Using an innovative chemical genetic screen, we identified Foxo3 as a direct substrate of Cdk5 in brain lysates. Cdk5 directly phosphorylates Foxo3, which increased its levels and nuclear translocation. Nuclear Foxo3 initially rescued cells from ensuing oxidative stress by upregulating MnSOD (also known as SOD2). However, following prolonged exposure, Foxo3 upregulated Bim (also known as BCL2L11) and FasL (also known as FASLG) causing cell death. Active Foxo3 also increased Aβ(1-42) levels in a phosphorylation-dependent manner. These events were completely inhibited either by expressing phosphorylation-resistant Foxo3 or by depleting Cdk5 or Foxo3, highlighting a key role for Cdk5 in regulating Foxo3. These results were confirmed in an Alzheimer's disease mouse model, which exhibited increased levels and nuclear localization of Foxo3 in hippocampal neurons, which preceded neurodegeneration and Aβ plaque formation, indicating this phenomenon is an early event in Alzheimer's disease pathogenesis. Collectively, these results show that Cdk5-mediated phospho-regulation of Foxo3 can activate several genes that promote neuronal death and aberrant Aβ processing, thereby contributing to the progression of neurodegenerative pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptide TFP5/TP5 derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson’s disease

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to speci...

متن کامل

Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation

Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The...

متن کامل

Anti-Diabetes Drug Pioglitazone Ameliorates Synaptic Defects in AD Transgenic Mice by Inhibiting Cyclin-Dependent Kinase5 Activity

Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the neuron specific activators p35/p39 and plays many important roles in neuronal development. However, aberrant activation of Cdk5 is believed to be associated with the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Here in the present study, ...

متن کامل

Cdk5: mediator of neuronal death and survival.

Cdk5 (cyclin-dependent kinase 5) is a serine/threonine kinase implicated to play pivotal roles in neuronal development. Recently, its potential involvement as a regulator of neuronal death and survival has attracted considerable interests. Importantly, increasing evidence has linked Cdk5 to the etiopathology of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral scler...

متن کامل

The structural perspective on CDK5.

Cyclin-dependent kinase 5 (CDK5) plays an essential role in the development of the central nervous system during mammalian embryogenesis. In the adult, CDK5 is required for the maintenance of neuronal architecture. Its deregulation has profound cytotoxic effects and has been implicated in the development of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 129 9  شماره 

صفحات  -

تاریخ انتشار 2016